skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baensch, Svenja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available May 1, 2026
  5. Abstract ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015–2018) are described.The analysis is limited to multimuon events defined as events with more than four detected muons (Nμ> 4) and in the zenith angle range 0° < θ < 50°. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3d.The interval of the primary cosmic-ray energy involved in the measuredmuon multiplicity distribution is about4 × 1015<Eprim< 6 × 1016eV.In this interval none of the three models is able to describe precisely the trend of the composition of cosmic rays as the energy increases. However,QGSJET-II-04 is found to be the only model capable of reproducing reasonably well the muon multiplicity distribution, assuming a heavy composition of the primary cosmic raysover the whole energy range, while SIBYLL 2.3d and EPOS-LHC underpredict thenumber of muons in a large interval of multiplicity by more than 20% and 30%, respectively.The rate of high muon multiplicity events (Nμ> 100) obtainedwith QGSJET-II-04 and SIBYLL 2.3d is compatible with the data, while EPOS-LHC produces a significantly lower rate (55% of the measured rate). For both QGSJET-II-04 and SIBYLL 2.3d, the rate is close to the data when the composition is assumed to be dominated by heavy elements, an outcome compatible with the average energy Eprim∼ 1017eV of these events.This result places significant constraints on more exotic production mechanisms. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  6. Free, publicly-accessible full text available February 1, 2026
  7. Free, publicly-accessible full text available January 1, 2026
  8. Free, publicly-accessible full text available January 1, 2026
  9. Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ d σ ( c c ¯ ) / d y , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ f ( c h c ) , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ s NN = 5.02 Te V at midrapidity ($$-0.96<0.04$$ - 0.96 < y < 0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ D 0 ,$$\textrm{D}^{+}$$ D + ,$$\textrm{D}_\textrm{s}^{+}$$ D s + , and$$\mathrm {J/\psi }$$ J / ψ mesons, and$$\Lambda _\textrm{c}^{+}$$ Λ c + and$$\Xi _\textrm{c}^{0}$$ Ξ c 0 baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ d σ ( c c ¯ ) / d y = 219.6 ± 6.3 ( stat . ) - 11.8 + 10.5 ( syst . ) - 2.9 + 8.3 ( extr . ) ± 5.4 ( BR ) ± 4.6 ( lumi . ) ± 19.5 ( rapidity shape ) + 15.0 ( Ω c 0 ) mb , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ s = 5.02 and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ e + e - and$$\mathrm {e^{-}p}$$ e - p collisions. The$$p_\textrm{T}$$ p T -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ R pPb ( c c ¯ ) = 0.91 ± 0.04 ( stat . ) - 0.09 + 0.08 ( syst . ) - 0.03 + 0.05 ( extr . ) ± 0.03 ( lumi . ) , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  10. Free, publicly-accessible full text available November 1, 2025